Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Hemant Sarin

Hemant Sarin

Freelance Investigator in Translational Science and Medicine, USA

Title: Conserved molecular mechanisms underlying the effects of small molecule chemotherapeutics on cells

Biography

Biography: Hemant Sarin

Abstract

For proper determination of the apoptotic potential of chemo-xenobiotics in synergism, it is important to understand the modes, levels and character of chemo-xenobiotics interactions with cells in context of predicted conserved biophysical properties, to know whether interactions at the cellular level are with and across cell membrane protein aqueous channels, with cell membrane phospholipids and trans-displacing, with cell membrane surface receptors and exosomal, with cell membrane surface receptors and pressure modulo-stabilizing or endocytic, or with cell membrane surface receptors and non-endocytic, and whether interactions at the sub-cellular level are with nuclear proteins or chromatin histones, with mitochondrial surface proteins and endocytic, with golgi/smooth endoplasmic reticulum proteins and endocytic, or with the cytoskeleton microtubules. Therefore, in this research chemoxenobiotic structures have been in context of charge, hydroxylation and carbonylation distribution over molecular space, and overall octanol-to-water partition coefficient (Log OWPC; unit less), molecular size viz. the Vander Waals Diameter (vd-WD; nm) and the Log OWPC-to-vd WD (nm-1) parameter and where applicable, the interacting hydrophilicity of the hydrophilic moiety [or core]-to-vd-WD (nm-1) and the incorporating lipophilicity of the hydrophobic core [or moiety]-to-vd-WD (nm-1) parameters. With this novel analysis methodology, the modes, levels and character of cellular and sub-cellular interactions of the spectrum of chemo-xenobiotics have been determined, for which a classification system has been developed based on predicted conserved biophysical properties. The significance of study findings is multi-fold: (1) Improving combinatory chemotherapy efficacy, (2) Improving predictive accuracy of personalized cancer treatment algorithms and (3) Discovery of xenobiotics of chemotherapeutic value.

Speaker Presentations

Speaker PPTs Click Here